
Large-Scale Distributed Computational Fluid Dynamics

on the Information Power Grid using Globus

S. Bamaxd* R. Biswas,* S. Saini, R. Van der Wijngaart,* M. Yarrow, t L. Zechtzer*

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

{barnard,rb iswas,saini,wijngaar, yarrow,lou }@ nas.nasa.gov

I. Foster, O. Larsson

MCS Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

{foster, larsson }@ mcs.anl .gov

Abstract

This paper describes an experiment in which a large-

scale scientific application developed for tightly-coupled

parallel maOzines is adapted to the distributed execution
em'i,'onment of the Information Power Grid (IPG). A brief

overview of the IPG and a description of the computational

fluid dynamics (CFD) algorithm are given. The Globus

metacomputing toolkit is used as the enabling device for

the geographically-distributed computation. Modifications
related to latency hiding and load balancing were required

for an efficient implementation of the CFD application in
the IPG environment. Performance results on a pair of SG!

Origin2000 machines indicate that real scientific applica-

tions can be effectively implemented on the IPG, however,

a significant amount of continued effort is required to make
s,wh an environment useful and accessible to scientists and

engineers.

1. Introduction

I11 one of its Enabling Technologies Goals, NASA has

committed to "provide next-generation design tools and ex :-

perimental aircraft to increase design confidence and cut

the development cycle for aircraft in half." To meet such

ambitious goals, a significant improvement is required in
NASA's ability to create, process, understand, store, and

conurmnicate data. It is unlikely that conventional ap-

proaches to high-performance computing will be able to
acl_icve these lofty objectives. Therefore. NASA is building

a tlationwide infrastructure called the htfomtation Power

Grid (IPG).

• I!inf_loyce of MRJ Technology Solutions.

t l:ml_l.yce of Sterling Softwar*."

The IPG is intended to provide ubiquitous and uniform

access, through a convenient interface, to a wide range of

computational, communication, data analysis, and storage
resources, many of which are specialized and carmot be

replicated at all user sites. It involves linking the vast.

heterogeneous, and geographically-distributed resources of
NASA and its IPG partners to create a scalable, adaptive,

and transparent computational environment. The interface
will hide details of machine particulars, such as location,

size, connectivity, and name, thereby presenting users with
a unified virtual machine. A blueprint for this propo_d

technology is docun_nted in [6].

The IPG can be used to address two major comput-

ing requirements. The first involves efficiently orchestrat-

ing several technologies to enable distributed human col-
laboration and location-independent access to unique re-

sources. The goal is to create an integrated environment
that allows researchers to solve specific problems quickly.

The second requirement is to provide a transparent, widely-

distributed, high-performance metacomputing facility to

solve extremely large applications that are currently in-

tractable on tightly-integrated parallel supercomputers.

The goal of the work reported in this paper is a proof-of-

concept demonstration of how IPG technology can be used

effectively to tackle a challenging problem in this second

area: ta_mling a single, large computational fluid dynam-

ics (CFD) application in a distributed fashion on separate
machines. The virtual distributed computer is viewed zts a

collection of supernodes, where each supemode is a homo-

geneous, tightly-coupled machine.

The Globus project [5] ,aims to develop a software in-

frastntcture for comptttations that integrate geographically-

distributed comptltational and information resources. At

present, it is a re;dislic starting point for the implemctua-
tion of the IPG. Globtts has already been deployed on a

large testhed, called GUSTO, spamling 40 sites and pro-

viding 2.5 Tflops of compute power. In this paper, we de-

scribe how Globus is used to combine homogeneous but dis-

tributed resources (SGI Origin2000 systems at NASA Ames

Research Center and at Argonne National Labormory) to

simulate an X-38 Crew Return Vehicle (CRV). This experi-

ment provided experience with Globus and insights into the

requirements for future IPG technology at NASA.

The CF'D application chosen for this experiment involves

the accurate prediction of high-speed viscous flow around a

geometrically-complex three-dimensional body. Problems

of this nature challenge the capabilities of the most ad-

vanced single-processor platforms available. Large-scale

multiprocessor computer systems offer a powerful tool to

solve large and complex problems; but they may still not

suffice, and gaining exclusive access to tl_m is difficult in

practice. The CFD software used is an enhanced version

of OVERFLOW [2], the most widely-used flow solver soft-

ware at NASA Ames. OVERFLOW deals with the geomet-

rical complexity of flow solution domains by allowing sets

of separately generated and ulxlated structured discretiza-

tion grids to exchange information through interpolation.

The main technical challenge in implementing sdentific

applications on the IPG lies in accommodating the sizable
and variable latencies as well as the reduced bandwidtl_

incurred in distributed computations on geographically-

separated machines. Common latency-hiding techniques

such as pipelining can only be used when data dependencies

are known in advance and when data can be prepared and

sent long before it is needed. For example, real-time visu-

alization of scientific data can be formulated as a two-stage

pipeline, with one machine generating the data and the other

performing the rendering. But such strategies am useless

for rmming tightly-coupled applications like OVERFLOW

in a distributed manner, where computation and communi-

cation are intrinsically interleaved. The focus of this work

is on identifying and implementing the minimum changes to
a state-of-the-art parallel program that are necessary to mn

it efficiently as a distributed application in an IPG environ-
ment.

The remainder of this paper includes a brief overview of

the IPG concept and the enabling software layer (Globus)

used in this project (See. 2), a description of the CF_

scheme and an outline of the application used for our exper-

iments (See. 3), a description of the IPG implementation of

the application and computational results (See. 4), and sum-

mary remarks and a discussion of future directions (See. 5).

2. Distributed computing environment

One or" the early success stories in tile history of dis-
tnhttted computing has been the Parallel Virtual Machine

(PVM) 171 library. However, the sub._quent substantial use

of PVM also revealed some of tile limitations of the concept

of the library. Much of the burden of using it for distributed

computing fell on the user. For example:

• All remote computer resources had to he named within

tim application program.

• All information needed for creating and running remote

processes (executables, data fries, scripts, etc.) had to be
moved to the proper location by the user.

• All remote processor and file system access issues, most

notably security and accounting, had to be explicitly re-
solved by the user.

This led to the realization that a more top-down approach

to distributed computing is needed, in which an integrated

environment for distributed applications and remote ser-

vices is provided without requiring an undue amount of ef-

fort on the part of individual users. This quest for an inte-

grated but distributed environment forms a substantial pillar
of the IPG project.

2. I. Information Power Grid

The Information Power Grid OPG) project is being con-

ducted by NASA in collaboration with a number of gov-

enmaent and academic parmers. A large number of com-

pute and data resources are currently available in principle

to NASA researchers, but they are often not easily acces-

sible from different locations. "The goal of the IPG is to

make these resources available easily, uniformly, and trans-

parently. The IPG is intended to facilitate the aggregation

of these distributed resources to enable sealable systems re-

quired to solve problems that are intractable on current lo-

calized computing environments [10]. More specifically,

the IPG is meant to support aerospace research and engi-

neering, with their typical requirements of large-scale simu-

lations and very data- and compute-intensive visualizations.

A layered design of IPG, depicted in Hg. 1, makes the

technical implementation manageable. The bottom two lay-

ers constitute the existing NASA computing environment,

and consist of the native operating system and the basic

hardware. The top layer, called Aerospace Engineering

System, provides a number of tools and interfaces that are

specific to future research in aerospace engineering. The

Tools and High-Level Services layer provides supplemen-
tal tools and interfaces to make the IPG Virtual Machine

more user-friendly and easier to administer and maintain.

All these four layers are beyond the scope of this paper.

The long-term objectives of the research effort behind

tills paper is to investigate, develop, and demonstrate tech-

nology for the IPG Virtual Machine layer. This layer pro-

rides a uniform interface for tile user to specify computa-

tional or infonnational tasks, regardless of where the tasks

arc to bc executed. It consists of five separate subsystems,

;is shown in Fig. I. Tllis layer constitutes a vinu# dis-

\

Aerospace Engineering System

Tools & High-Level Services

¢0

-_88
_rtual Resource_erfaces __=_

_v interfac_vices ¢_ _'_
Physicdl _source Drivers"v

Native Operating System

Hardware (Computers, Network, Storage)

Figure 1. Layered structure of the Information
Power Grid.

tributed computing resource that resolves issues of compati-

bility between the heterogeneous systems spread around the

org,-mizations of NASA and its partners. This requires tools

for specifying memory requirements, the number of dis-

tributed processes, processing speeds, compilers, wall clock
time needs, libraries, header files, and so on.

2.2. Globus metacomputing toolkit

Several recent research projects [I, 5, 8, 15] provide pro-

totypes for the IPG Virtual Machine layer. In this paper
we test one of them, the Globus rnetacomputing toolkit [5],

as a possible realization. Globus evolved out of the suc-
cessful but still somewhat ad hoc I-WAY high-performance

distributed computing experiment [4].

Globus provides core services required for the IPG Vir-

tual Machine, including the management of resource lo-
cation and allocation, communication, gathering unified

resource information, authentication, remote process cre-
ation, fault detection, and remote data access. For the pur-

pose of the experiments reported in this paper, in which ded-
icated resources are used, the critical Globus components

are communicatior, and process creation. Communication

is implerncnted tlu'otlgh MPICH-G [3], a Globus..enal_ed

device for the puNic-domain implementation of MPI [9],

and process creation flu'ough the co-allocation service ac-

cessed via the 9'Lobusrun utility used to interface with
local schcdtfiers. While Globus is used to m_e the two

remotc p_allel computers recogmze each other, the entire

application is nm as a single message-passing program un-
der MPICH, and the application programmer need not be

aware of any distinclion between the lwo machines.

3. Computational fluid dynamics application

The CF'D scheme used in this work utilizes stntctured

over,el gnds Dased on Ihc Chimera 1141 style of domain

decomposition. Such schemes have proven to be appropri-

ate for predicting nigh-speed viscous flows around complex

shapes for both static and dynamic (i.e., moving-body)con-

figurations. The Chimera scheme divides the entire prob-

lem domain into a system of grids that overlap one an=

other by one or more grid cells. The solution proceeds

by updating, at each iteration, the inter-grid boundaries on

each grid with interpolated data from overlapping grids.

Geometrically-complex shapes are broken into groups of

overlapping curvilinear body-fitted grids and relatively sim-

ple rectilinear background grids. Besides being numeri-

cally expedient, the domain decomposition nature of the

Chimera approach offers a high degree of coarse-grained

parallelism that can be exploited in distributed computing
environments.

The most popular overset-grid flow solver that is used at
NASA Ames Research Center is the OVERFLOW code [2].

There are at least three different parallel implementations

of OVERFLOW, using different programming models and
data-distribution methods. The first is a fine-grained MPI

version where it is possible to partition individual grids

among processors; however, it does not have all the vari-

ous boundary conditions and grid types implemented. The

second version is an MLP (multi-level programming) code

designed specifically for the CC-NUMA architecture of the

Origin2000. It is able to balarfce the processor workloads

automatically based on runtimes from the first few itera-

tions, but does not work on multiple loosely-coupled ma-
chines.

The third version is the one used for the experiments re-

ported in this paper. Here, each grid is assigned to a unique

processor, m_d the set of grids assigned to any particular

processor is referred to as a group. In this coarse-grained

data-distribution scheme, it is only necessary to communi-

cate some of the boundary information between processors.

The computation for individual grids is entirely serial.
A number of e_mncements have been made within this

third version of OVERFLOW that allow solution-based

mesh adaptation [12] m:d scalable parallel execution [16].

MPI message passing facilitates execution on a variety of

distributed computer platforms, and the code has been suc-

cessfully tested for static geometry problems on an IBM SP

multiprocessor.

3.1. Parallel implementation

Overset grid schemes belong to the general class of

Schwarz dom_fin decomposition methods. Since each sub-

domain boundary is updated only once per iterat ion with in-

terpolations from neighboring subdomains possibly requir-

ing commtmicatio_t,_, a tmtur, d coarse-grained level of par-

allelism exisls. The autonlaled Cartesian grid getlcr;ttion

scheme generates :l relatively large numt_r of grids, ttsuzdly

many more d_n the available number of processors. This
trend is expected to continue as computational problems be-
come larger andmore complex.

Because there are many more grids than processors, our
distribution approach places one or more grids onto each
processor in a load-balanced fashion. A grouping algorithm
seeks to balance the computational workload by considering
both ale number of grid points in each group and an estimate

of the work associated with each grid point. The later is
necessary because some grids may require more computa-
tiot_ work per grid point than those in others. Forexample,
a turbulence model may be applied on grids near the body
but not on grids in the far field. Weighting factors that cor-
respond to the additional work are applied to the grids con-
taining the more computationally intensive points, prior to
performing the grouping. The grouping strategy also seeks
to maintain a degree of locality among the memtm" grids in
each group to maximize the level of intra-group connectiv-
ity. Details of the bin-packing grouping algorithm are given
in [16].

o it _1_ it _1

| i | I |

"1- T "1- T -I °"

Group 2 -1- ,_-1- ,_-1-
-I- 1" -1- 1" -I- I" -u--i,,_
.i • _I_ £ I J, 1.4 J I

I ! I ! I I I-I"1 -- I"

-I-- T "1-- T --I-- 1" --I--I1 J --I. d--t.

"!Inter_;oup

--I-- 1" --I-- T "1--

.1_ J, _l_ ,L _1_ J, _1_ J

.1__ it __l. it __1__ it __1

! I I I I I i_1-=Ji_idlmM_qdP_1-1"-,- 1"-,',._'- _ __ _ Intra-group

Figure 2. Intm-group and inter-group Interpo-
lations between grids.

Boundary information is interpolated between overlap-
ping grids at each iteration. Grids tlmt ,are in the same group
perform intm-group interpolations locally on each proces-
sor. Gilds that overlap with other gilds in a different group

I'x'rform inter-group interpolations bctwee,_ processors. For

the latter case. the donor values supplied to tl_c neighboring
group are computed locally and then exchanged using MPI
c;tlls. This approach is outlined schematically in Fig. 2,
where two groups are shown, each containing two grids.

Both intra-group and inter-group interpolations take place
at the end of each iteration; hence, interpolated data on all
grids lag by one iteration.

The rectilinear-grid generator occasionally generates
grids that are individually much larger than the average size
of a group. This situation leads to either load imbalance
or to grids that do not fit in core. To avoid this situation,
the grids are checked after generation, and a recursive bi-

rtary splitting technique [16] is applied to those grids that
exceed the average group size. The rectilinear-grid gener-
ator then automatically generates the appropriate system of

grid components and computes the necessary interpolation
stencils. The splitting procedure is significantly more com-
plicated for the body-fitted curvilinear grids and has not yet
been implemented for such grids.

3.2. Test case

The parallel version of the overset CFD code has been
implemented on the IBM SP at Army Corps of Engineers
Waterways Experiments Station (CEWES). Test cases in-

clude steady-state viscous calculations of two relatively
complex aerodynamic configurations: NASA's X-38 Crew
Return Vehicle (CRV) and Army's Comanche helicopter
(without blades). The former, shown in Fig. 3, is used for
the II:'(3 simulation experiments reported in this paper.

Figure 3. View of the X-38 Crew Return Vehi-
cle.

The gild system for the X-38 CRV cottsists of 13 near-
body curvilineat grids and 115 off-body rectilinear grids,
for a total of more than 2.5 million points. The largest grid
is body-fitted, and contains 437,976 points. A single grid
this hu'gecauses scalability problems; future work will ad-
dress lhis issue. The sm;dlest of the 128 overlapping grids

contains only 216 poiats. Having many small grids is desir-

¢.-
"Traditional"

parallel flow solver Iteration

able from a load balancing perspective, but may harm the

convergence of the numerical scheme.

Parallel performance results on a single supercomputer
are available in [16]. Runs on up to nine processors of the

IBM SP show a total communication cost of only 2% of

the entire calculation. The deterioration of the parallel effi-

ciency to 88% when going from four (the smallest number

of processors required to do in-core computation) to nine

processors is due mostly to a poorer load balance as the

number of grids per processor decreases. This can be alle-

viated to some extent by breaking large grids into several

smaiier ones.

4. IPG implementation

As mentioned in Sec. 3, the enhanced version of OVER-

FLOW has been developed as a coarse-grained parallel pro-

gram for tightly-coupled parallel machines. The commu-
nication overhead on a fairly richly-connected architecture

such as the IBM SP is typically about 10% of the total ex-

ecuiion time on 128 processors. However, in a truly dis-

tn bt:ted IPG environment with poorer connectivity (smaller

aggregate baildwidth) mad si_lificandy larger latencies due

to the geograpllical separation of the computers used, mod-
ifications must be made to reduce the impact of communi-

cation. This is achieved in two phases.

First and most notably, a higher level of asynchrony must
be embedded into the numerical scheme to hide latency.

This issue is addressed in Sec. 4. I. Second, a more sophisti-

cated tectulique must be used to map the overset grids to the

supemodes of the IPG and, in turn, to the individual proces-

sors of these supernodes. This is described in Sec. 4.2.

4.1. Latency hiding

The time-advancement strategy of the solution scheme

on the overlapping grids has been altered to hide the in-

creased latency between IPG supemodes. In the origi-

nal parallel scheme, all communicating processors first ex-

change botmdary values. Once the exchange is complete_-
the interior soludon domains are updated independently.

Consequently, the entire communication is exposed, and

ovcr,:l! performance deteriorates as the connectivity de-

grades. In the new scheme, latency tolerance is obtained

by lag!2ing the boundlu-y value update by one additional

tUnc_tcp. The boundary value exchange is initiated at the

beginning t)l'_t timcstep, but the values are not umd until the

t',cginning olthe net/timestcp. It allows the overlap ofcom-

ptttal ion and comnulnicatioll for its much its the duration of

one entire timcstcp. We call this the deferred scheme. Both

tilt' origi u,d ,tad thc deferred schemes are depicted schemat-

ic:tllv in Fig. 4.

I Communicate boundary values]

for timestep N (Synchronize)

Compute timestep N+t using
time,step N boundary values

I

Latency-tolerant (IPG)
distributed flow solver Iteration

.._ Post async communication of Iboundary values for timestep N I

Compute timestep N+I using I
time,step N-1 boundary values]

l Finish async communcationfor timestep N (Synchronize)

I

Figure 4. Creating flow solver latency toler-
ance for the IPG environment.

One _tential problem with r.he deferred scheme is that

lagging the boundary value updates may render the flow

solver utxstable or cause it to converge less rapidly. How-

ever, the results reported in Sec. 4.3 show negligible dif-

ference in convergence or in the values of some physical

quantifies for the X-38 CRV simulation (which is basically

a steady-state case except for some unsteadiness belfind the
vehicle that does not affect the solution at the leading edge

or on the body).

The possibility remains that the deferred method may

lead to instability or slower convergence for more difficult

unsteady problems. However, note that it is only necessary

to use the latency-tolerant method at the boundary between

the supemodes, where the high latencies are encountered. It

may be possible to partition the collection of grids between

the supemodes so that the bomadary encompasses only a rel-

atively steady, slow-changing part of the solution, thereby

avoiding instability or convergence problems.

4.2. Load balancing

The original method for grouping grids lind assigtling

groups to processors described in See. 3.1 is ad hoc. but
quite ct'fcctive at balancing load on a tightly-coupled par-

allcl system for modcnlte-siz_d problems (,tssuming that a

good load balance is possible for a given grid system and

number of processors). It mostly ignores the cost of com-
munication between grids, except to the extent that it at-
tempts to place neighboring gridson the same processor, As
long as the communication overhead is relatively insignifi-
cant, this will be effective. On a system consisting of two
or more loosely-coupled supemodes, however, the greatly
increased latency and reduced bandwidth between the su-

pemodes can have a substanaal impact. Moreover, since
large numbers of processors will be required for future very
large-scale computations, we arc led to investigate a more
principled method for load balancing.

The problem of assigning grids to processors in a way
tlmt balances load and minimizes communication is a clas-

sic partitioning problem, which often arises in distributed

unstructured applications. Such a mapping mitigates the ef-
fect of reduced bandwidth. The set of grids dcfu'_s an undi-
rected graph, with the grids represented by the vertices and

the overlap between pairs of grids represented by the edges.
An estimate of the work required by each grid can be used
to define a weight for each vertex, and an estimate of the

cost of each inter-grid interpolation can be used to define a
weight for each edge.

7"he pa:;itioT_ing problem is to assign v vertices to P pro-
ccssors (P _< _:) such that each processor has a (roughly)
equal aggregate vertex weight, while the total weight of the
edges that span different processors is minimized. ('Figure5
shows a small example for v = 20 and P = 4 with u_dform
vertex weights and edge weights). This problem has been
thoroughly studied. While it is NP-hard, several heuristic
solutions are very effective. We have integrated one such
partitioner, called MeTiS [11], into our flow solver code,

and find that it distributes grids as effectively as the original
scheme. This is because the X-38 CRV test case contains a

few very large grids that domitmte the workload. It is there-

fore impossible to improve the quality of the load balance
without splitting the large grids. However, the Me'liS par-
titioner will generally be more useful for larger problems
with more grids.

Another weakness of the original load balancing method
is that it estimates the work required by each grid from

the number of grid points. (Near-body grids are treate$1.
slightly differently from off-body grids.) While the number
of floating-point operations is proportional to the number of

grid points, cache effects may introduce nonlinearities be-
cause the grid size may interact with the various cache sizes
in tmpredictabte ways. A comparison of the estimated work
and the actual work required for each of the 128 grids of
the X-38 CRV revealed considerable discrepancies: as lligh
as 13% for one body-titted grid a11d35% for one off-body

grid. Instead of using mere estimates for grid weights, we
use actual mc;tsttrements. Using a det'atdt partitioning, the
simttlatiotl is run for a few timesteps and the work t'or each

Figure 5. Partitioning an unstructured graph
while balancing computation and minimizing
communication.

grid is measured. These measurements are then used to pro-
duce a final partitioning.

4.3. Results

Our IPG testbed consisted of three separate SGI Ori-
gin2000 machines: two located at NASA Ames Research
Center and the third at Argonne National Laboratory.. A
maximum of 8 processors were used on any one machine,
each rurming Globus version 1.O.0. MPICH-G was used as
the message-passing library.

The flight test conditions for the X-38 CRV were a Mach
number of 1.5 and a 15-degree angle of attack. Rgure 6
shows the computed Mach contours on the symmetry plane.
Additional details of the simulation and computed loads are
given in [12].

Figure 6. Mach contours for the X-38 Crew
Return Vehicle.

The lirsl experiment was to compare the results of t'om-
pttl_ilions usillg lhc original arid dcferl-ed versions of thc

flow solver (as described in Sec. 4,1) for the X-38 configu-

ration. Figures 7 and 8 show the difference in the L2-norms
of the residuals of the iterative scheme for two represen-

tative near-txxly grids. Reduction of the residual on these

grids is a good measure of the overall convergence of the
method.

2
'7

Cq

,d

1o

t°2 i........................i.........................
,o" _iiii...............4-- o,i_i,,a !........

10 0 500 1000 1500

Timestep

Figure 7. Residual comparison for the X-38

CRV nose cone (gdd 1).

t

0.05

o0,i.......................i.......................
LI ! I-- on_._, 1

0,03.[]------...-,-..-..-................../--- I......
0.02'

0.01

o,ooo 5_o tobo t_

Timestep

Figure 8. Residual comparison for the X-38

CRV rear section (grid 5).

..°-

Clearly. there is no discernible difference in convergence
_tween the two versions of the flow solver for grid 1, which

is situated at the nose cone of tile vehicle. The residual on

grid 5, which is situated at the mar of the vehicle, con-

verges for neither method. Tl_is is due to the fact that the

tlow in this portion of the configuration is genuinely un-

steady, and no steady state (zero residual) exisl s. Although a
mismatch exists bclwecn the residuzd evolutions of the two

schemes, the general trend is similar, and there is no rea-
son to believe that the deterred version will be less stable

than the onginai version. The mismatch can be removed

by employing a subiteration strategy [t3l, which is a form
of detect correction that is often used to reduce errors due

to factorization and poor linearization. However, several

random checks of some imegrated physical quantities (lift,

drag, roll, pitch) for the X-38 from both the original and
the deferred time-advancement strategies show differences

of only a few tenths of a percent for all cases. Most likely,

these differences are caused by the unsteady behavior be-

hind the tail. Hence, it is not necessary to incur the addi-

tional cost of subiterations.

Having established that the deferred timestep method

gives accurate results, we now turn our attention to its ef-

ficiency. Table 1 lists the runtirae per timestcp for three

different configurations of eight processors. Evelyn and

Piglet are each 8-processor Origin2000 systems located at
NASA Ames, connected via a HIPPI channel. Denali is a

96-processor Origin2000 at Argonne, connected to Evelyn

and Piglet via a DS3 lnternet connection. To eliminate vari-

ability, all timings are. the minimum over at least 15 trial s.

secs/timestep iOriginal Deferred

4 4 16.2 12.7 II
8 18.0 II4 4 21.4 21.3

Table 1. Wall clock time (in secs) for each

timestep of the CFD solver using the original
and the deferred methods for three different

configurations,

The first row of Table 1 shows that the deferred method

does indeed hide at least some of the communication

time between two supemodes connected by a rather I_igh-

performance HIPPI chmmel. Tile second row shows timt

the application actually runs slower on a single 8-processor

supernode than it does on two HIPPI-connected 4-processor

supernodes (no difference between the original and the de-

ferred methods). This is explained by the fact that the Ori-

gin2000 hardware does not support asynchronous message

passing, but there are separate DMA engines on the HIPPI

boards that do support asynchronous commtmication be-

tween separate systems.
Finally, the tllird row shows no signi ficant difference, be-

tween the ongiu_d and the det'errcd methods using Ihc Inter-

net t2OllllCCtiotl. This result is expected bccztUSc this contig-

uration dtx_s nol _dlow asynchronous mcssa,ging. To over-

come Ihis problem, we arc cttrrenlly investigating the use

of dedicated nodes to serve as communication processors.

This row of da_a is included only to show the degradation in

pcrt'on'nance due to the relatively low-performance lmcrnet
connccoon.

5, Summary and future directions

This paper described an experiment in which a large-

scale application in computational fluid dynamics (CFD)

was adapted for efficient execution on the districted envi-
ronment of the Information Power Grid (IPG), The Globus

metacomputing toolkit was used as the enabling software

in this project. Tim _ scheme uses strucPared overset

grids and an enhanced version of the OVERFLOW code.

The MPI-based OVERFLOW/Chimera application appears

to he well-suited for a proof-of-concept demonsmation of

IPGIGlobus technology. The application is very important

to NASA, and will soon require resources exceeding what

is available in any one tightly-coupled parallel system oper-

ated by NASA or its partners.
Load imbalance and communication overhead (given

the smaller bandwidth and the larger latency due to the ge-

ographical separation of the computational resources used)
were identified as d_ main sources of parallel inefficiency.

We anticipate alleviating the load imbalance problem by

incorporating a "breakup" scheme to split large near-body

grids, through better measurement of the loads associated

with each grid, and by using a graph partitioner to more

effectively assign grids to processors. Preliminary results

showing that the application tolerates an additional lag

of one dmestep in boundary value interpolation suggests

that the extra latency and reduced bandwidth involved

in geographically-remote communication can be at least

partially hidden. However, significant effort is still required

to make the IPG a generally useful and a widely accessible

environmez_t for solving major computational problems.

Acknowledgements

The authors gratefully acknowledge the assistance of
Andrew Wissink of MCAT, Inc., and Robert Meakin of

Army/NASA AFDD for making the adaptive rectilinem _=

grid version of OVERFLOW available to us for the IPG ex-

periments. The authors would also like to thank Terrence

McGuitmess of San Diego State University for helping us
examine the communication capabilities of our Origin2000

computers. This work was parti_flly supported by NASA un-

der Contract Number NAS 2-14303 with MRJ Technology
Solutions and under Contract Number NAS 2-13619 with

Sterling Soltwme.

References

[! I D. Bhatia, V. BtaT_vski, M. Camuseva, G. Fox, W. Furman-

ski. and G. lh'emchandran. Webflow - a visual programming
paradigm for Web/Java based coarse grain distributed com-
puting. Concurrency: Practice and Experience, 9:555--577,
1997.

[2] P. Buning, W. Chan. K. Reaze, D. Sondak. I.-T. Chiu, J. Slot-

nick. R. Gomez, and D. Jespersen. Overflow user's manual,
version t.6au. NASA Ames Resea_h Center, 1995.

[3] I. Foster, I. Geisler, W. Gropp, N. Karonis, E. Lusk,

G. Thimvathukal, and S. Tuecke. Wide-a_a implementa-
tion of the Message Passing Interface. Parallel Computing,
24:1735--1749, 1998.

[4] I. Foster, I. Geialer, W. Nickless. W. Smith, and S. Tueclm.
Software infrastructure for the I-WAY high performance dis-
tfibuted computing experimamt. In 5th IEEE Syrup. on High
Performance Distributed Computing, pages 562-571, 1997.

[5] I. Foster and C. Kesselman. Globus: A metacomputing in.

frastmcture toolkit. International Journal of Supercomputer
Applications, 11:115--128, 1997.

[6] I. Foster and C. Kessclman, editors. The Grid."Blueprint for
a New Computing Infrastructure. Morgan Kaufmam_ 1999.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek.
and V. Sunderam. PVM: Parallel Virtual Machine. MIT

Press, 1994.
[81 A. Grimshaw, W. Wulf, and the Legion team. The Legion

vision of a worldwide virtual computer- Communoations of
the ACM, 40:39--45, [997.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjeilum. A hish-

performance, portable implementation of the MPI Message
PassingInterface Standard.Parallel Computing, 22=789-
828, 1996.

[10] W. Johnston, D. Gannon, W. Nitzherg, and W. V. Dalsem.

l_,fformation Power Grid implementation plan. Working
Draft, NASA Ames Reseaxeh Center, 1998.

[11] G. Karypis and V. Kumax. A fast and high quality multi-
level scheme forpartitioning irregular graphs. Department
of Computer Science Tech. Rep. 95-035, University of Min-
nesota. 1995.

[12] R. Meakin. On adaptive refinement and'overset structute,d

grids. Ill 13th AIAA Conzputational Fluid Dynamics Conf.,
AIAA-97-1858, 1997.

[13] T. Pulliam. Time accuracy and the use of implicit methods.

In 1 lth AIAA Computational Fhdd Dynamics Conf., AIAA-
93-3360. 1993.

[14] J. Steger, F. Doughet_y, and J. Benek. A Chimera grid
scheme. ASME FED, 5, 1983.

[15] J. Waldo. Jini architecture overview. Sun Mictosystems,

1998; http://java.sun.eonqproducts/jini/whitepapers.
[16] A. Wissink and R. Meakin. Computational fluid dynamics

with adaptive overset grids on parallel and distributed com-
puter platforms. In Intl. Conf. on Parallel and Distributed

Processing Techniques and Applications, pages 1628-1634,
1998.

